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Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they 
are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-
tors.  The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of 
the highest permeabilities to calcium.  Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive 
α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels.  The activation of nAChRs can mediate 
three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through 
voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-
induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the 
ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs).  Downstream signaling events mediated by nAChR-
mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur 
in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular 
signaling cascades), and long-term effects (such as neuroprotection via gene expression).  In addition, nAChR activity can 
be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship.  Further advances in imaging 
techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-
ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments. 
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Review

Introduction

Neuronal nicotinic acetylcholine (ACh) receptors 
(nAChRs) are in the cys-loop ligand-gated ion channel 
superfamily, and are activated by nicotine in addition to 
the endogenous neurotransmitter ACh.  The nAChRs 
are widely expressed in the brain, located both at the syn-
apse (presynaptically and postsynaptically) as well as 
extrasynaptically[1, 2].  Presynaptic and preterminal nAChRs 
can enhance neurotransmitter release, postsynaptic nAChRs 
can contribute to fast excitatory transmission, and extrasyn-
aptic nAChRs can modulate many neurotransmitter systems 
by influencing neuronal excitability and/or intracellular 

processes[1– 3].  The nAChRs play important modulatory 
roles in neuronal development and synaptic plasticity, par-
ticipating in cognitive functions such as learning, memory, 
and attention.  In addition, decrease, disruption or alteration 
in the function of neuronal nAChRs contributes to dysfunc-
tions associated with various neurodegenerative diseases and 
disorders, including (but not limited to) epilepsy, schizo-
phrenia, Parkinson’s disease, autism, Alzheimer’s disease, and 
addiction[1, 4].  

Neuronal nAChRs are pentameric transmembrane pro-
teins, consisting of five subunits from a portfolio of nine 
α (α2–α10) and three β (β2–β4) subunits[5–7] .  Some are 
homomeric nAChRs, such as α7 receptors which contain 
five α7 subunits, and others are heteromeric nAChRs, which 
comprise α and β subunits[1].  Different subtypes of neuronal 
nAChRs are known to be differentially permeable to calcium 
ions (Ca2+)[2, 3, 8].  The α7 nAChR subtype has one of the 
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highest permeabilities to calcium[7] , the activation of which 
can raise cytoplasmic calcium levels and trigger a series of 
calcium-dependent intracellular processes.  Calcium ions are 
one of the most versatile intracellular messengers known, 
and impacts almost every aspect of cellular life, including 
excitability, exocytosis, motility, apoptosis, and transcription; 
this is achieved by interacting with thousands of proteins 
and their downstream effectors[9, 10].  Calcium influx through 
nAChRs, particularly through the α-bungarotoxin-sensitive 
α7-containing nAChRs, is a very efficient way to raise cyto-
plasmic calcium levels.  Here we will present a brief summary 
of the calcium signals initiated by the activation of neuronal 
nAChRs, and its possible physiological relevance.

Cytoplasmic calcium signals initiated by neuronal 
nAChR activation

There are three types of cytoplasmic calcium signals initi-
ated by neuronal nAChR activation; (1) direct calcium influx 
through the nAChR[6, 11], (2) indirect calcium influx through 
voltage-dependent calcium channels (VDCCs) which are 
activated by the nAChR-mediated depolarization[6, 11], and 
(3) calcium-induced calcium release (CICR) (triggered by 
the two sources listed above) from the endoplasmic reticu-
lum (ER) through the ryanodine receptors[12–14] and inositol 
(1,4,5)-triphosphate receptors (IP3Rs)[13–15].

Direct calcium influx through nAChRs  Two primary 
methods have been developed for estimating the calcium 
permeability of nAChRs.  The first utilizes the shift in the 
reversal potential of nAChR-mediated currents due to 
changes in the extracellular calcium concentration.  The per-
meability ratio PCa/PNa, which is the relative permeability 
of calcium to sodium ions, was then estimated using the 
Goldmann-Hodgkin-Katz constant field equation[16, 17].  The 
PCa/PNa ratio estimated in this way was ~2 for heteromeric 
neuronal non-α7 nAChRs, and >10 for homomeric α7 or the 
heteromeric α9/α10 nAChRs[2, 3, 7, 8].  However, this relative 
approach has serious limitations.

The second method for estimating the calcium per-
meability of nAChRs is based on fluorescent calcium 
indicators[7, 18–20].  This approach relies on the simultaneous 
recording of fluorescence signals and transmembrane cur-
rents, and requires perfect voltage control of the cell and the 
absence of CICR.  In this way, the percentage of the total 
current flowing through a given ion channel that is carried 
by calcium ions, the so-called “fractional calcium current” 
(usually indicated as Pf ), can be measured.  Heteromeric 
neuronal nAChRs have a Pf of 2%–5%, whereas homomeric 
α7 nAChRs (which have the highest Pf) range from 6%–12% 

(depending on the species)[7, 21].  
Interestingly, for the α3 subunit-containing human 

nAChRs, incorporation of the α5 subunit significantly 
increases calcium permeability[22].  Populations of nAChRs 
composed of α4 and β2 subunits with different stoichiom-
etries can be expressed in oocytes with different functional 
properties; eg the (α4)3(β2)2 stoichiometry has been demon-
strated to have a much greater Ca2+ permeability than does 
the (α4)2(β2)3 stoichiometry[23].

 Indirect calcium influx through VDCCs  Activation 
of nAChRs can depolarize neurons, inducing the activa-
tion of the VDCCs and subsequent calcium influx.  The 
nAChRs that contain α3 and/or β2 subunits in brain and 
ganglionic neuronal preparations are associated predomi-
nantly with calcium signals that are mediated by depolariza-
tion and the activation of VDCCs[12, 14, 24], as well as the α7 
nAChRs[25, 26].  Calcium influx through VDCCs augments 
the primary calcium signals generated by the direct influx 
through nAChRs[11, 14].  These two mechanisms may be phys-
iologically complementary; calcium entry through inwardly 
rectifying nAChRs will be robust under either resting or 
hyperpolarized potentials, whereas calcium influx through 
VDCCs will occur mainly at more depolarized potentials 
(-40 mV)[27].

Intracellular calcium release from internal stores  In 
addition to the entry of extracellular calcium through chan-
nels in the plasma membrane, the cytoplasmic concentration 
of calcium reflects a complex interplay between buffering 
and mobilization capacities.  In particular, calcium release 
from intracellular stores (via CICR) can have a crucial role in 
defining calcium responses[28].  The activation of α7 nAChRs 
can generate calcium transients via entry through the chan-
nel pore itself (independently of VDCCs), which can then 
activate CICR from ryanodine-dependent stores[12–14].  In 
neurons of the substantia nigra pars compacta, depletion of 
internal calcium stores inhibits the increase in cytoplasmic 
calcium levels induced by nicotine and the α7 nAChR-selec-
tive agonist choline[12].  Blockade of ryanodine receptors in 
neuroblastoma cells also significantly reduces the increase in 
cytoplasmic calcium induced by activation of β2 and α7 sub-
unit-containing nAChRs[14].  Functional coupling between 
α7 nAChRs and ryanodine receptors has also been observed 
in cultured hippocampal astrocytes, where α7 nAChR-
mediated calcium signals arise primarily from CICR through 
ryanodine receptors[13].  

Cytoplasmic calcium signals can also be enhanced by 
activation of the IP3 receptor (IP3R) second-messenger sys-
tem and the subsequent release of calcium from intracellular 
stores.  The involvement of IP3R-dependent calcium stores 
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in neuronal nAChR signaling was shown when nAChR-
induced calcium responses were reduced with IP3R-selective 
antagonists[13–15].  The functional interaction between IP3 and 
ryanodine receptor-dependent calcium signals is considered 
to be a key signaling mechanism[28].  Reports that nAChR-
induced release of calcium from IP3Rs is secondary to that 
from ryanodine receptors are consistent with their sequential 
activation[13, 14].  Although it is unclear how nAChR stimula-
tion activates IP3Rs, possible mediators are a calcium-de-
pendent phospholipase C (PLC)[29], and/or calcium-sensor 
proteins[30] activated following nAChR activation.  The abil-
ity to activate different sources of calcium confers a further 
spatial and temporal dimension to the calcium signals evoked 
by nAChR activation.  By converting acute nAChR stimula-
tion into sustained cellular events, calcium signals may be a 
crucial link between nAChRs and the downstream processes 
that impinge on many neuronal functions.  

Another source of intracellular Ca2+ stores includes the 
mitochondria[31].  The ER-mitochondrial interactions are 
important for the continued filling of the ER[32, 33].  The efflux 
of Ca2+ from the mitochondria through the mitochondrial 
Na+/Ca2+ exchanger can contribute to the overfilling of 
some intracellular Ca2+ stores, particularly those that are 
in extremely close proximity to mitochondria[34, 35].  The 
repeated activation of nAChRs can enhance calcium release 
from mitochondria[36, 37].

Downstream signaling events mediated by nAChR-
mediated calcium responses

Calcium signals initiated by the activation of nAChRs 
can initiate responses via a variety of different mechanisms.  
According to the duration and timing, we have grouped these 
into instantaneous effects, short-term effects, and long-term 
effects.  

Instantaneous effects
Regulation of cytoplasmic calcium levels  The immediate 

impact of nAChR activation is the direct influx of cations 
(including calcium ions) through the channel pore.  This 
instantaneous membrane depolarization can then activate 
the VDCCs, thereby increasing cytoplasmic calcium levels.  
Both the direct calcium influx through nAChRs, and indirect 
calcium influx through VDCCs, can then trigger calcium 
release from intracellular calcium stores as noted above[6].  
In chick ciliary ganglion neurons, a major portion of the 
nAChR-induced changes in cytoplasmic calcium levels is 
due to influx through VDCCs[11, 26].  In cultured hippocam-
pal neurons, about 85% of the nAChR-mediated calcium 
level changes were blocked by cadmium, a VDCC blocker, 

suggesting that most of the calcium influx was through 
VDCCs[25].  In cultured hippocampal astrocytes[13], activa-
tion of nAChRs leads to a rapid and large calcium transient.  
This rise in cytoplasmic calcium level is entirely dependent 
on direct calcium influx, without any contribution from 
VDCC activation.

Regulation of neurotransmitter release  At presynaptic 
terminals, the activation of nAChRs can initiate neurotrans-
mitter release directly by raising intraterminal calcium levels 
due to calcium influx through the channel pore, as well as 
indirectly by calcium influx through VDCC activation due 
to membrane depolarization.  For example, in hippocam-
pal synaptosomes, the activation of α3β4 nAChRs induced 
the release of noradrenaline without the involvement of 
VDCCs[38], whereas in striatal dopamine synaptosomes with 
β2 subunit-containing nAChRs[39], the nAChR-induced 
release of dopamine was mediated by VDCCs[38, 40].  In addi-
tion, presynaptic α7 nAChRs at excitatory synapses can 
increase the probability of glutamate release in the presence 
of tetrodotoxin and cadmium[41].  Lastly in hippocampal 
mossy fiber terminals, calcium entry through α7 nAChRs 
can initiate CICR from presynaptic stores, and elicit bursts 
of miniature excitatory postsynaptic currents[42].  All of these 
examples of calcium-dependent neurotransmitter release 
facilitated by presynaptic nAChRs are consistent with the 
activation of exocytotic mechanisms[43].

Short-term effects  Although electrical signaling and 
neurotransmitter release related to nAChR activation can 
occur within milliseconds, downstream events and regula-
tory feedback mechanisms operate over longer time periods, 
often requiring seconds to minutes[4].  These events usually 
depend on cellular signaling without gene expression, and we 
will refer to these as ‘short-term effects’.

Regulation of neurotransmitter release  In addition to 
inducing neurotransmitter release as noted above, presynap-
tic nAChRs may also modulate transmitter release through 
calcium-mediated signal transduction cascades.  For exam-
ple, protein kinase C (PKC) has been proposed to modulate 
striatal dopamine release by nAChR activation[44].  Further-
more, nAChR and PKC-mediated stimulation of extracel-
lular signal-regulated mitogen-activated protein kinase 
(ERK/MAPK)[45] and annexin phosphorylation[46] have 
been reported to contribute to the regulation of exocytosis in 
adrenomedullary cells.

Regulation of nAChR desensitization  The nAChRs can 
undergo desensitization, a reversible reduction in response 
during sustained agonist application, which has been pro-
posed to be important in controlling synaptic efficacy, 
responses to cholinergic agents, and certain nAChR-related 
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disease states[47].  For α7-containing nAChRs in rat hip-
pocampal interneurons[48], and for native nAChRs in chro-
maffin cells[49, 50], the recovery from desensitization is delayed 
by high cytoplasmic calcium levels.  This is probably because 
calcium catalyzes the activity of enzymes such as protein 
kinase C (PKC) and/or calcineurin, whose dynamic balance 
controls the recovery process[47].  In addition, α7 nAChRs 
on chick ciliary ganglion neurons can undergo substantial 
activity-dependent inactivation[4, 51]; this inactivation or 
rundown depends on receptor activation, calcium influx, cal-
cium release from internal stores, calmodulin, and CaMKII 
activity.  

Long-term effects  A critical element of the long-term 
consequence of the regulation of synaptic signaling at the 
cellular level is probably that of transcriptional regulation.  In 
addition to influencing neurotransmitter release, a role for 
nAChRs in the regulation of cell signaling and gene expres-
sion has been reported[52].  In neuroblastoma cells, exposure 
to nicotine influences the expression of a diverse set of genes, 
including transcription and protein-processing factors, 
and proteins associated with RNA binding and the plasma 
membrane[53].  For nAChRs, such transcriptional control 
is usually triggered by calcium influx directly through the 
receptors, indirectly through VDCCs, and through release 
from internal stores[4, 54–58].  

Regulation of neurotransmitter release  The activation of 
nAChRs can influence gene expression for immediate early 
genes and genes involved in transmitter synthesis[15, 52, 59, 60].  
In the chick ciliary ganglion[61], the nAChR-mediated control 
of transcription relies on calcium influx and calcium release 
from internal stores to activate first CaMKII/IV, and then 
ERK/MAPK.  These enzymes activate the transcription fac-
tor CREB (the cAMP response element-binding protein), 
which can alter gene expression.  

As the rate-limiting step in catecholamine biosynthe-
sis, tyrosine hydroxylase (TH) is a major control point in 
neurotransmitter release from catecholamine-containing 
neurons, and is subject to diverse regulatory mechanisms[62].  
Long-term treatment with nicotine increases the concentra-
tion of TH-mRNA and, consequently, TH-activity, both in 
vivo and in chromaffin cells[62].  This effect is calcium-depen-
dent and mediated by protein kinase A (PKA)[63].  The nic-
otine-induced activation of expression of the gene encoding 
TH requires a prolonged increase in calcium concentration, 
and the activation of store-dependent calcium channels[63] 
and ERK/MAPK[64].

Involvement in synaptic plasticity and memory mechanisms  
Agonists and antagonists of nAChRs can improve and impair 
performance in cognitive tasks, respectively[65].  However, 

elucidating the cellular mechanisms that underlie the contri-
bution of nAChRs to cognitive function is a daunting task.  
CREB and ERK/MAPK signaling cascades have attracted 
particular attention because their activities are central to 
long-term plasticity in the nervous system[66].  This might 
have physiological relevance to many functions, including 
(but not limited to) addiction, learning and memory[67].  
The nAChRs mediate the calcium-dependent activation of 
ERK/MAPK and CREB in several neuronal models[61, 68, 69].  
The hippocampus has received particular attention as a key 
area for memory processing, and nAChR-mediated intra-
cellular calcium increases promote activation of CaMKII/
IV and ERK/MAPK, and the sustained phosphorylation of 
CREB[69, 70].  In addition, in rat brain slices that contain both 
the ventral tegmental area (VTA) and the nucleus accum-
bens (NAc), it has been demonstrated[71] that activation 
of presynaptic α7 nAChRs induces long-term potentiation 
(LTP; a putative cellular model for learning and memory) 
of the excitatory input to the VTA if nicotine application is 
paired with postsynaptic stimulation.  In hippocampal prepa-
rations, presynaptic α7 nAChRs are found to enhance the 
probability of LTP[72].  These actions might also contribute to 
the mechanisms that underlie the effects of nicotine on cog-
nition.  Activation of the hippocampal ERK/MAPK pathway 
is required for the formation of contextual and spatial memo-
ries in mammals[66].  Thus, factors that interfere with the 
activation of this pathway by α7 nAChRs might contribute to 
cognitive decline.  

Involvement in reward and dependence  Drug dependence 
is thought to involve plastic changes in neuronal circuits that 
are associated with ‘rewarding’ behaviours.  Nicotine depen-
dence, which is mediated by interaction with nAChRs, is 
likely to involve the modification of signaling cascades that 
modulate synaptic plasticity and gene expression, as pro-
posed for other drugs of abuse[67, 73, 74].  Like other addictive 
substances and rewarding behaviours, nicotine increases the 
release of dopamine from the mesolimbic projections to the 
NAc[6, 75].  Although somatodendritic nAChRs on dopamine-
containing neurons of the VTA can excite these neurons 
directly, which results in transient responses that are termi-
nated by desensitization of nAChRs[76], the stimulation and 
subsequent desensitization of GABA-containing neurons 
in the VTA also contributes to an excitatory effect through 
removal of the inhibitory influence of GABA[77].  

For nicotine addiction, studies show that in rats, nicotine 
withdrawal (but not chronic treatment with nicotine itself) 
significantly reduced the levels of CREB and phosphorylated 
CREB in rat cortex and the amygdala[78].  Phosphorylated 
CREB also decreased in the NAc in mice following chronic 
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consumption of nicotine in their drinking water[79].  Changes 
in phosphorylated CREB in the NAc are consistent with 
previous reports that decreased CREB activity in this region 
contributes to drug reinforcement[80].  

Involvement in neuroprotection  Nicotine and other 
nAChR agonists are neuroprotective in several models of 
neuronal death, both in vivo and in vitro[81].  The nAChR-
mediated neuroprotection against excitotoxicity is calcium-
dependent[82–84] and does not involve blockade of gluta-
mate receptor function[83–85].  Excessive activation of the 
N-methyl-D-aspartate (NMDA) receptor is thought to play 
a prominent role in a variety of acute and chronic neurologi-
cal injuries[86, 87].  In hippocampal slices, nicotine-mediated 
protection against acute NMDA excitotoxicity is mediated 
by the activation of phosphatidylinositol 3-kinase (PI3K) and 
the ERK/MAPK pathway[84].  These signalling molecules 
could increase the expression of calcium buffering proteins 
such as calbindin-D28K, which have been implicated in the 
nAChR-dependent amelioration of excitotoxic insults[85].  In 
cortical cultures, the nicotine-induced calcium-dependent 
activation of the phosphatase calcineurin is proposed to 
mediate the protection afforded by nicotine against gluta-
mate excitotoxicity[88].  

Perspectives

Compared to the rapid nAChR-mediated current, the 
corresponding kinetics of the intracellular calcium response 
are relatively slow; eg the time-to-peak for nAChR-mediated 
current responses in dendrites of interneurons was 39 ms, 
whereas the duration of the calcium response was 7 sec[3].  In 
general, the prolonged duration of the evoked Ca2+ response 
by nAChR stimulation is due to several factors, including 
(but not limited to) the fact that the intracellular removal 
mechanisms for calcium are slower, and the secondary Ca2+ 
release from intracellular stores (eg, the ER and mitochon-
dria) or from the extracellular space via VDCC activation.  
Thus the relatively large and prolonged Ca2+ accumulation 
mediated by nAChRs helps these ‘‘fast’’ receptors create pro-
longed responses at the level of Ca2+ homeostasis[3].

The direct and indirect calcium influx resulting from 
the activation of neuronal nAChRs can generate specific, 
complex calcium signals that mediate instantaneous (such 
as presynaptic neurotransmitter release), short-term (such 
as the modulation of desensitization through cellular signal-
ing) and long-term effects (such as neuroprotection via gene 
expression).  The regulation of calcium signaling is one of 
the most important aspects induced by the activation of neu-
ronal nAChRs[6], which are cell-type, location, and receptor 

subtype-specific.  However the spatial and temporal charac-
teristics of nAChR-mediated calcium signaling are far from 
understood.  In addition, nAChR activity can be regulated 
by cytoplasmic calcium levels[48, 89, 90], suggesting a complex 
reciprocal relationship.  Consistent with this, we recently 
found that the activation of the M1 muscarinic ACh receptor 
in hippocampal interneurons decreased the function of the 
α7 nAChRs in a calcium-dependent manner[89].

Physiological roles for neuronal nAChRs continue to be 
delineated.  For example the functions of nAChRs on glia, 
especially on astrocytes, which occupy about half of the total 
volume of the brain and are critical for understanding the full 
picture of various brain functions[91, 92], have received consid-
erably less attention to date than for receptors expressed in 
neurons.  However evidence suggests that astrocytic nAChRs 
may be involved in neuroprotection.  Furthermore there may 
be a role for nAChRs in inflammatory responses in the brain 
as in the periphery[93–95].  The identification of novel gene 
targets regulated by neuronal nAChR function remains a big 
challenge, requiring the continued elucidation of the signal-
ing pathways through which nAChRs regulate their expres-
sion.  The ERK/MAPK signaling cascade is considered to lie 
at the center of many signaling pathways, and so a particular 
association with α7 nAChRs in relation to long-term behav-
ioural changes is still waiting to be addressed[6].  

Although the intracellular mechanism that mediate the 
modulation of neuronal nAChRs are not fully resolved, 
further advances in imaging techniques, animal models, 
and more potent and subtype-selective ligands for nAChRs 
would almost certainly help in understanding the neuronal 
nAChR-mediated calcium signaling and lead to better thera-
peutic treatments.  
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